VNA不僅可以作為激勵(lì)信號(hào)源,也可以提供四個(gè)矢量接收機(jī)用來測(cè)量 A1、B1、A2和B2信號(hào)。
圖 3:矢量負(fù)載牽引測(cè)量數(shù)據(jù)
三、混合型負(fù)載牽引系統(tǒng)
針對(duì)毫米波頻段的被測(cè)件,大多數(shù)都是在片晶圓器件,因此測(cè)量需要探針臺(tái),不過探針臺(tái)對(duì)于負(fù)載牽引測(cè)量而言相當(dāng)于一個(gè)測(cè)試夾具,沒有嚴(yán)格的要求,但是在系統(tǒng)集成及探針臺(tái)改造是在片系統(tǒng)搭建的一個(gè)關(guān)鍵步驟。
通常使用電纜實(shí)現(xiàn)探針到阻抗調(diào)諧器之間的連接,電纜及探針的差損影響阻抗調(diào)諧器在探針尖參考端面的阻抗調(diào)諧范圍。由于探針和電纜都不是精確的 50 歐姆阻抗,使得阻抗調(diào)諧器調(diào)諧范圍的中心偏離 50 歐姆阻抗點(diǎn),如圖 4,圖中黑色虛線圓為阻抗調(diào)諧器自身的阻抗調(diào)諧范圍,圖中紅色虛線圓為阻抗調(diào)諧器經(jīng)過電纜到達(dá)探針尖的阻抗調(diào)諧范圍,現(xiàn)實(shí)中很多被測(cè)件的阻抗點(diǎn)很可能在紅色虛線圓與黑色虛線圓之間,因此不能測(cè)量到被測(cè)件的最佳匹配點(diǎn)。
圖 4 電纜和探針的差損及駐波對(duì)阻抗調(diào)諧范圍的影響
為了解決在片負(fù)載牽引系統(tǒng)阻抗調(diào)諧范圍不足的問題,通常都是采用混合型負(fù)載牽引系統(tǒng),也就是在機(jī)械阻抗?fàn)恳幕A(chǔ)上增加有源阻抗?fàn)恳δ堋H鐖D5 給出的混合型負(fù)載牽引系統(tǒng)原理框圖,除了兩個(gè)核心的阻抗調(diào)諧器外,需要一臺(tái)高端網(wǎng)絡(luò)分析儀及兩個(gè)雙定向耦合器。
很多網(wǎng)絡(luò)分析儀都內(nèi)置兩個(gè)信號(hào)源及至少四個(gè)接收機(jī),使用網(wǎng)絡(luò)分析儀的第一個(gè)信號(hào)源作為前向驅(qū)動(dòng)信號(hào),其中四個(gè)接收機(jī)用來測(cè)量入射波、反射波及傳輸波:A1、B1、A2 和 B2,ГLOAD=A2/B2,由于輸出端阻抗調(diào)諧器受探針、電纜及雙定向耦合器差損影響使得在其探針尖參考端面的反射系數(shù)縮小,也就是 ГLOAD 不能滿足實(shí)際測(cè)試需求;使用網(wǎng)絡(luò)分析儀的第二個(gè)信號(hào)源在輸出端反向注入一個(gè)信號(hào),同時(shí)改變其功率和相位,從而間接改變 A2 信號(hào)的幅度和相位,最終實(shí)現(xiàn)的 ГLOAD 的提高,這就是混合型負(fù)載牽引測(cè)量的原理。
在混合型負(fù)載牽引系統(tǒng)里,機(jī)械阻抗調(diào)諧器充當(dāng)預(yù)匹配的功能。為了減少對(duì)反向注入信號(hào)功率的要求,阻抗調(diào)諧器始終保持與反向注入信號(hào)相位同步。
圖 5:混合型負(fù)載牽引系統(tǒng)原理框圖
由于多工器的帶寬非常窄,寬帶測(cè)量需要頻繁更換多工器,而且市場(chǎng)上沒有成熟的商業(yè)化的多工器,使得混合型諧波牽引功能實(shí)現(xiàn)起來較困難,因此成熟的混合型諧波負(fù)載牽引系統(tǒng)都是在負(fù)載端基波上增加有源牽引功能的諧波牽引系統(tǒng)。
四、探針以及探針臺(tái)
為了探測(cè)電路性能,我們需要把信號(hào)傳導(dǎo)到某類傳輸線上, 這意味著我們需要至少兩個(gè)導(dǎo)體,即“信號(hào)導(dǎo)體”和“地導(dǎo)體”。因此三種探針類型如圖:
圖6:典型探針類型
除了以上基本的GSG, GS, SG類型的探針,還有各種組合,如GSGSG,GSSG,SGS等等。探針本身需要很好的匹配內(nèi)部不同傳輸媒介的特征阻抗,要求保證在不同傳輸模式下電磁能量的高效傳輸。
而探針臺(tái)可以固定晶圓或芯片,并精確定位待測(cè)物。手動(dòng)探針臺(tái)的使用者將探針臂和探針安裝到操縱器中,并使用顯微鏡將探針尖端放置到待測(cè)物上的正確位置。一旦所有探針尖端都被設(shè)置在正確的位置,就可以對(duì)待測(cè)物進(jìn)行測(cè)試。
綜上所述,要實(shí)現(xiàn)負(fù)載牽引系統(tǒng)需要以下配置
負(fù)載牽引系統(tǒng)配置: