Caffe,由伯克利視覺與學(xué)習(xí)中心開發(fā),其GreenTea項目對OpenCL提供非正式支持。Caffe另有支持OpenCL的AMD版本。
Torch,基于Lua語言的科學(xué)計算框架,使用范圍廣,其項目CLTorch對OpenCL提供非正式支持。
Theano,由蒙特利爾大學(xué)開發(fā),其正在研發(fā)的gpuarray后端對OpenCL提供非正式支持。
DeepCL,由Hugh Perkins開發(fā)的OpenCL庫,用于訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò)。
對于剛進入此領(lǐng)域、希望選擇工具的人來說,我們的建議是從Caffe開始,因為它十分常用,支持性好,用戶界面簡單。利用Caffe的model zoo庫,也很容易用預(yù)先訓(xùn)練好的模型進行試驗。
4.2. 增加訓(xùn)練自由度
有人或許以為訓(xùn)練機器學(xué)習(xí)算法的過程是完全自動的,實際上有一些超參數(shù)需要調(diào)整。對于深度學(xué)習(xí)尤為如此,模型在參數(shù)量上的復(fù)雜程度經(jīng)常伴隨著大量可能的超參數(shù)組合??梢哉{(diào)整的超參數(shù)包括訓(xùn)練迭代次數(shù)、學(xué)習(xí)速率、批梯度尺寸、隱藏單元數(shù)和層數(shù)等等。調(diào)整這些參數(shù),等于在所有可能的模型中,挑選最適用于某個問題的模型。傳統(tǒng)做法中,超參數(shù)的設(shè)置要么依照經(jīng)驗,要么根據(jù)系統(tǒng)網(wǎng)格搜索或更有效的隨機搜索來進行。最近研究者轉(zhuǎn)向了適應(yīng)性的方法,用超參數(shù)調(diào)整的嘗試結(jié)果為配置依據(jù)。其中,貝葉斯優(yōu)化是最常用的方法。