國際半導(dǎo)體藍(lán)圖協(xié)會(InternaTIonal Technology Roadmap for Semiconductors) 預(yù)測到2030 年CMOS 工藝的特征尺寸將減小到5 nm, 而截止頻率ft 將超過700 GHz. 德國IHP 研究所的SiGe 工藝晶體管的截止頻率ft 和最大振蕩頻率fmax都已經(jīng)分別達(dá)到了300 GHz 和500 GHz,相應(yīng)的硅基工藝電路工作頻率可擴(kuò)展到200 GHz 以上。
由于硅工藝在成本和集成度方面的巨大優(yōu)勢, 硅基毫米波亞毫米波集成電路的研究已成為當(dāng)前的研究熱點之一。 美國佛羅里達(dá)大學(xué)設(shè)計了410 GHz CMOS 振蕩器,加拿大多倫多大學(xué)研制了基于SiGe HBT 工藝的170 GHz 放大器、160 GHz 混頻器和基于CMOS 工藝的140 GHz 變頻器,美國加州大學(xué)圣芭芭拉分校等基于CMOS 工藝研制了150 GHz 放大器等,美國康奈爾大學(xué)基于CMOS 工藝研制了480 GHz 倍頻器。
在系統(tǒng)集成方面, 加拿大多倫多大學(xué)設(shè)計了140 GHz CMOS接收機(jī)芯片和165 GHz SiGe 的片上收發(fā)系統(tǒng), 美國加州大學(xué)柏克萊分校首次將60 GHz 頻段硅基模擬收發(fā)電路與數(shù)字基帶處理電路集成在一塊CMOS 芯片上,新加坡微電子研究院也實現(xiàn)了包括在片天線的60 GHz CMOS 收發(fā)信機(jī)芯片,美國加州大學(xué)洛杉磯分校報道了0.54 THz 的頻率綜合器, 德國烏帕塔爾綜合大學(xué)研制了820 GHz 硅基SiGe 有源成像系統(tǒng), 加州大學(xué)伯克利分校采用SiGe 工藝成功研制了380 GHz 的雷達(dá)系統(tǒng)。
日本NICT 等基于CMOS 工藝實現(xiàn)了300 GHz的收發(fā)芯片并實現(xiàn)了超過10 Gbps 的傳輸速率, 但由于沒有功率放大和低噪聲電路, 其傳輸距離非常短。 通過采用硅基技術(shù), 包含數(shù)字電路在內(nèi)的所有電路均可集成在單一芯片上, 因此有望大幅度降低毫米波通信系統(tǒng)的成本。