圖6. AD9652的輸出頻譜,時鐘為 fs=310 MHz,采用fIN ~70 MHz的正弦輸入。此時,未施加通道校準和隨機化。2次(HD2)和混疊3次(HD3)諧波分別在大約140 MHz和100 MHz處可見。交錯(IL)雜散同樣可見。這些是直流、fs/2(圖中的OS2)以及fs/4(圖中的OS4)處的失調(diào)音。另外,增益(時序)雜散可見于fs /2-fIN(圖中的GS2)、fs /4+fIN(圖中的GS4+)以及fs /4- fIN(圖中的GS4-)。此圖中的SNR查詢?nèi)藶樽儾盍?,因為部分雜散成分和噪聲功率混在了一起。
然而,如果同樣的 ADC 經(jīng)過前景校準以便減少通道失配,那么交錯雜散功率將會大幅下降,如圖7所示。與上例中的情況類似,通道諧波失真不受影響,但通過通道失配校準大幅降低了交錯雜散功率。
圖7. 同一個AD9652的輸出頻譜,采用同樣的輸入,但經(jīng)過校準后四個通道減少了失配。與圖6相比,雖然2次和3次諧波未受影響,但交錯雜散的功率大幅下降,并且SFDR改善了30 dB,即從57 dBc到87 dBc。
最后,圖7中的頻譜純度可得到進一步改善,方法是使通道順序隨機化,如圖8所示。此時,隨機化使用專利技術(shù),對四個通道的順序進行間歇性加擾無需通過另一個(第五個)通道來達成,從而省下了與此相關(guān)的功耗。如圖8所示,經(jīng)過隨機化之后,結(jié)果頻譜中僅有常規(guī)諧波失真。
圖8. 上例開啟交錯順序隨機化之后的輸出頻譜。隨機化殘留交錯雜散可將它們的功率擴散到噪底中,相應(yīng)的尖峰便消失了??梢钥吹降膬H有常規(guī)諧波失真。SNR幾乎未受影響,因為來自交錯音并擴散的雜散功率經(jīng)過失配校準后可以忽略。
結(jié)論
時間交錯是增加數(shù)據(jù)轉(zhuǎn)換器帶寬的強大技術(shù),在失配校準方面,以及通過隨機化技術(shù)消除殘留雜散成分方面的發(fā)展已經(jīng)能夠?qū)崿F(xiàn)完全集成、極高速 12/14/16 位交錯 ADC。
在輸入信號受頻帶限制的情況下(比如很多通信應(yīng)用),乒乓(雙路)交錯方法可通過頻率規(guī)劃將干擾交錯雜散分配到遠離目標輸入頻段的位置。然后便可以數(shù)字手段過濾雜散成分。雖然這種方法相比工作在 IL 采樣速率一半的非交錯式 ADC 獲得同樣的無雜散輸入帶寬所需的功耗要高出幾乎一倍,但它不僅可以通過處理增益提高動態(tài)范圍 3 dB,而且還能降低抗混疊的滾降,并修平 ADC 前的濾波器——因為 IL 采樣速率高。
若需要用到 IL 轉(zhuǎn)換器的全部輸入頻帶才能捕捉寬帶輸入信號,那么可以采用更高次的交錯轉(zhuǎn)換器。這種情況下,校準和隨機置亂可實現(xiàn)交錯失真和雜散成分的補償和消除。