x,y向量之間余弦距離定義如下:
余弦距離或歐式距離越大,則兩個(gè)特征值相似度越低,屬于同一個(gè)人的可能性越小。如下圖,他們的臉部差異值為0.4296 大于上文所說(shuō)的該模型最佳閾值0.36,此時(shí)判斷兩人為不同的人,可見(jiàn)結(jié)果是正確的。
把歸一化為-1到1的圖像數(shù)據(jù)、特征點(diǎn)提取模型的參數(shù)還有人臉數(shù)據(jù)庫(kù)輸入到人臉比對(duì)的函數(shù)接口face_recgnition,即可得人臉認(rèn)證結(jié)果。程序接口的簡(jiǎn)單調(diào)用方式如下所示:
人臉比對(duì)算法的準(zhǔn)確率方面是以查準(zhǔn)率為保證的,AUC (Area under curve)=0.998,ROC曲線圖如下所示:
我們?cè)O(shè)計(jì)的比對(duì)模型主要特點(diǎn)是模型參數(shù)少、計(jì)算量少并能保證高的準(zhǔn)確率,一定程度上適合在嵌入端進(jìn)行布置。對(duì)比其他人臉比對(duì)模型差異如下表格所示:
far@1e-3表示將反例判定為正例的概率控制在千分之一以下時(shí),模型仍能保持的準(zhǔn)確率;
dlib在實(shí)際測(cè)試中,存在detector檢測(cè)不出人臉的情況,導(dǎo)致最終效果與官網(wǎng)上有一定差異;
resnet-18為pytorch的playground標(biāo)準(zhǔn)模型;
lfw/agedb_30/cfp_ff為標(biāo)準(zhǔn)人臉比對(duì)測(cè)試庫(kù),測(cè)試過(guò)程中圖片已經(jīng)過(guò)人臉居中處理。
5.人臉?lè)雌墼p
從技術(shù)角度來(lái)說(shuō),人臉是唯一不需要用戶配合就可以采集的生物特征信息。人臉不同于指紋、掌紋、虹膜等,用戶不愿意被采集信息就無(wú)法獲得高質(zhì)量的特征信息。人臉信息簡(jiǎn)單易得,而且質(zhì)量還好,所以這引發(fā)了有關(guān)個(gè)人數(shù)據(jù)安全性的思考。而且在沒(méi)有設(shè)計(jì)人臉?lè)雌墼p算法的人臉識(shí)別系統(tǒng)使用手機(jī)、ipad或是打印的圖片等都能對(duì)輕松欺騙系統(tǒng)。
所以我們采用多傳感器融合技術(shù)的方案,使用紅外對(duì)管與圖像傳感器數(shù)據(jù)進(jìn)行深度學(xué)習(xí)來(lái)判斷是否存在欺詐。紅外對(duì)管進(jìn)行用戶距離的判斷,距離過(guò)近則懷疑欺詐行為。圖像傳感器用深度學(xué)習(xí)算法進(jìn)行二分類,把正常用戶行為與欺詐用戶行為分為兩類,對(duì)欺詐用戶進(jìn)行排除。
二分類算法能夠有效抵抗一定距離的手機(jī)、ipad或是打印圖片的欺詐攻擊。對(duì)人臉欺詐數(shù)據(jù)集與普通人臉數(shù)據(jù)集預(yù)測(cè)如圖所示:
本二分類算法在100萬(wàn)張圖片中準(zhǔn)確分類的概率為98.89%,所以并不會(huì)對(duì)整體系統(tǒng)的準(zhǔn)確率進(jìn)行影響,保障系統(tǒng)的可靠性。
6.算法優(yōu)化